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INTRODUCTION

Let CT/ denote the space of r-times continuously differentiable functions
on the interval/ = [b, c] of the real line R. The question of uniqueness of
best approximation of functions in CT/ by functions in a finite-dimensional
subspace, with respect to various norms, has been investigated in several
papers. For example, Garkavi [3] examines the problem using the ordinary
supremum norm

11/11", = sup 1/(x)l,
XEI

while Moursund [7] and Johnson [5] use the norm

IIIII = max[ll/ll", ,11/(l) II", ,... , II/lTl II",].

In this paper we consider uniqueness of best approximation in certain
classes of normed spaces which include, e.g., CrJ with the norm

I1III = max[l/(a)l, 1/(1)(a)I, .. " I/lT-l)(a)l, 11/<-) lip],

1 ~ p ~ 00, where II . lip denotes the LP norm and a is a fixed point in 1.
Applied to these norms, Sections 2-4 yield results in the cases p = 00,

1 < P < 00, and p = I, respectively.
In Section I, the classes of normed spaces to be treated are described, and

a representation for continuous linear functionals on these spaces is obtained.
In Sections 2-4, various subclasses of these normed spaces are investigated.
The results of Section 2 are obtained by realizing the spaces there as spaces
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of continuous functions on a compact topological space and then applying
the Haar condition as generalized by Rubenstein [3, p. 94]. The results of
Sections 3 and 4 are 0 btained by using the representation of Section 1and the
Hahn-Banach Theorem. Section 5 is a remark concerning certain other
norms.

1. PRELIMINARIES

Let B be any normed linear space with norm Ii . liB' Let S be a vector space,
and T a nonzero linear transformation from S into B such that the nullspace
7)(T) has a finite dimension r. Further, let {'pa}:=1 be a set of r linear
functionals on S which are independent on 7)(T).

EXAMPLE. Let S = C'l, the space of all r-times continuously differentiable
functions on 1= [b, c] C R, .p"f = j<a-1)(a), ex = 1,2,... , r, for some fixed
a E I, and TI = I l '). Then T(S) = COl and 7)(T) is the set of all polynomials
of degree ~ r - 1. We can take B = LPI, the space of all Lesbesgue p-th
power integrable functions on I, with the usual norm II . lip, 1 ~ p ~ 00.

DEFINITION. If/ES, define 11/1\ = max[max" l'pall, II TIIIB]'
It is easily seen that II . II is a norm on S. Indeed, Ii TIIiB fails, in general,

to be a norm on S only because the nullspace of T is not necessarily the zero
element alone. The information contained in the numbers {'paf}:=1 is, in a
sense, the minimum that must be added to obtain a true norm.

THEOREM 1. IfL E S*, the dualoJS, then there exist constants c1 , C2 , ... , c,
and fL E B* such that LJ = 1:~~1 c;.piJ + fL(Tf),for allJin S, and

,
II L Ils* = L I c; I + II fL IIB* .

;~1

Proof. If J E S1 = S () 7)('p1) () ... () 7)(.P'), then IIJII = II TIIiB . So on
S1' LI = fL(Tf) for some fL E B* with II fL IIT(Sl)* = II fL IIB* (by using the
Hahn-Banach theorem to extend a bounded linear functional from T(S1) to B
while preserving the norm). Now let e; E 7)(T), j = 1,2,... , r, so that
'pie; = Dii ,i,j = 1,2,... , r. IfJE S, thenJ - 1::=1 (.Pi[) ei E S1 ,and we have

LJ - it (Lei) .P1 = L [J - it ('pif) ei]

= fL (T(I - ~1 ('pif) ei]) = fL(Tf).

Hence LJ = fL(Tf) + L:~1 (Lei) .Pi[ = fL(Tf) + L:=1 ci.Pi[.
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From this, we have
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r

I Lfj :s;; II TfilB II fL ilB* + L I Ci II :£11
i~l

= (II fL iiB* + i~ I Ci I) Ilfli·

Thus II L Ils* :s;; ii t-tIIB* + L;=l I Ci I·
On the other hand, we can choose an f E Sl such that If TfllB = 1 and

fL(Tf) ? II fL liB" - E, since II fL IIT(s )" = II fL liB"· Let f1 E YJ(T) be such that
1

Thus f + f1 is such that

j = 1,2,... , r.

and :£i(f + f1) = sgn Ci, j = 1,2,... , r.

Hence Ilf +fIll = 1 and L(f+ f1) ? II fL liB" - E + L;~l I Ci I. But E is
arbitrary. Q.E.D.

If V is a subspace of S, we say that g E V is abest approximation of an
element f of S if

Ilf-gil = infllf-hll = p.
hEV

(1)

It is clear that the set P of best approximations in V of a function in S is
convex.

DEFINITION. By the dimension of a convex set P in a finite-dimensional
vector space we mean the largest integer k for which there exist points
gl , gz ,... , gk+1 in P such that gl - gk+1 , gz - gk+1 ,... , gk - gk+1 are linearly
independent. If P consists of a single point, the dimension of P, dim P, is o.
If P is empty, dim P = -1. The maximum dimension of sets Pv(f) of best
approximation in V of pointsfin S(J V) is called the rank of V. Following
[10], we say that V is r-semi-Tchebycheff or r-Tchebycheff if, for all f in S,
-1 :s;; dim Pv(f) :s;; r or 0 :s;; dim Pv(f) :s;; r, respectively. "0-Tchebycheff"
is abbreviated to "Tchebycheff."]

In terms of this definition we see that if V is finite-dimensional, then V has
rank :s;; r if and only if V is r-Tchebycheff. In particular, a finite-dimensional



SETS OF BEST APPROXIMATION 197

subspace V is a space of unique best approximation for any function in S if
and only if V is Tchebycheff.

We now state a corollary to Theorem I to which we will refer in the sequel.

COROLLARY 1. For eachfES, there exists L ES*, L = L:~l Ci2"i + I-I-T:f= 0,
such that, whenever (1) holds,

1 ~ j ~ r,

I-I-(T(f - g)) = II T(f - g)liB III-I-IIB* ,
and

II T(f - g)IIB = P if I-I-:f= O.

Proof From a well-known corollary to the Hahn-Banach Theorem,
there exists L in S* with

L(V) = {O}, II L Ils* = 1, and L(f) = p. (2)

By Theorem 1, II L Ils* = L:~l I Ci I + III-I-IIB*' Then

r

p = L(f) = L(f - g) = L Ci2"i(f - g) + I-I-(T(f - g))
i=l

r

~ L I Ci I I 2"j(f - g)1 + II T(f - g)IIB Ii I-I-IIB*
i~l

~ ttl I Ci I + III-I-IIB*) max[m~x I 2"~(f - g)l, II T(f - g)IIB]

= 1 '11f - gil = p.

Thus, Cj2"i(f - g) = I Ci I p, 1 ~ j ~ r, I-I-(T(f - g)) = /I T(f - g)IIB 111-1- IIB*,
and If T(f - g)IIB = P if 1-1- :f= O. Q.E.D.

2. B = ex

In this section, let B = ex, the space of continuous functions on the
compact Hausdorff space X with norm /I . 1/00 .

DEFINITION. A subspace V of S, of dimension n, has property H(p) if,
for any linearly independent points gl ,g2 ,... , gp+l of V, the number of j's
(1 ~ j ~ r) such that 2"igi = 0 (Vi)' plus the number of x's in X such that
(Tgi)(x) = 0 (''Ii)' does not exceed 11 - P - 1.
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THEOREM 2. Let V be an n-dimensional subspace of S. For V to be
p-Tchebycheff, property H(p) is sufficient. Conversely, if T is onto CX, then
property H(p) is necessary for V to be p-TchebychejJ.

Proof Consider, first, the case S = CX and T = identity map on CX
(r = 0). If X is a closed interval, the result is due to Rubenstein [3, p. 94].
If X is arbitrary, the result follows, e.g., by appropriately modifying the
proof of Rivlin and Shapiro [8, p. 36] to include the cases p > O.

We will reduce our general case to the above by realizing the normed
space S as a subspace of CX', in the case of sufficiency, and as equal to CX',
in the case of necessity, for an appropriately chosen compact set X'. Consider
the set X' = {2'~}:~1 u {2'X}XEX of linear functionals on S, where
2'xf = (Tf)(x). Give {2'X}XEX the topology induced by X in the obvious way
and impose on the r elements {2'~}:~1 the discrete topology. The set X' with
the sum topology is compact. It follows that the space S with norm

!Ifll = max[m~x I 2'OIfl, II Tfllcx] = sup[1 2''11:~1' I(Tf)(x)l xEx]

= sup If(x')1
x'

is realized as a subspace of CX', and the sufficiency result follows.
If TS = CX, it is clear that the realization of the space S with norm

Ilfll = supx' If(x')1 is all of CX', and the necessity result follows. Q.E.D.

EXAMPLE 1. Let B = COl with norm II '11", , and fix a in R. Let S be the
set of all functionsf defined on I u {a} such thatfIII{a} is the restriction of a
function in COl. Let 2'1J= f(a), and let Tfbe the unique continuous extension
off III{a} to 1. Let V be the n-dimensional subspace of S consisting of those
elements which coincide on I\{a} with (n - 2)-degree polynomials. By
Theorem 2, it follows that V is a Tchebycheff subspace.

EXAMPLE 2. Consider the space Cl[O, 1] with norm

Ilfll = max[lf(a)l, Ilf(1) II",], aE[O, 1].

Then the space of all linear functions of the form p(x) = ex + c is a
I-dimensional Tchebycheff subspace.

A further example is given in the following corollary.

COROLLARY 2. Consider cr[b, e] with norm

Ilfll = max[lf(a)l, Ij<1)(a) I'00" If<r-1)(a)l, Ilf<r) II",],
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where a E [b, c]. Let Pn be the subspace ofpolynomials ofdegree n or less. Then
if r ~ n, Pn has rank r. Moreover, if p and q are any two best polynomial
approximations to f in cr[b, c], then plr> = q(r>.

Proof Here S is the space of the example in Section 1, where B = L 00I
with norm II . 1100 . It is easily checked that the (n + I)-dimensional subspace
P n has property H(r) and so, by Theorem 2, has rank not exceeding r.

We see more, however, from (2) and Corollary 1. If r > n, the corollary is
trivially true; so assume r ~ n. Iff E crI butf1: P n , then the L of Corollary 1
cannot be of the form L:~I c;!l'i, where !f?;f = fU-I)(a), j = 1,2,... , r. This
follows from (2) and the obvious fact that no nontrivial linear combination
of the {!f?;};~1 can vanish identically on Pn' Thus '" of Corollary I is
#: 0, and, so, Ilfl r ) - plr) 1100 = p = infllf - h II. Suppose qlr) #: p(r" and
Ilfl r ) - qlr) 1100 = p. We can clearly assume, without loss of generality, that
p(~)(a) = f(~)(a) = q(~)(a), ex = 0, 1,... , r - I. But this contradicts the
uniqueness of best approximation offl r ) by polynomials in Pn-r with respect
to II . 1100 . Note, also, that Pn has rank exactly r if r ~ n. Q.E.D.

Note. In [5] and [7] it is shown that the conclusions of Corollary 2 remain
valid if we consider, instead, the equivalent norm

II h II = max[11 h llao , II h(l) 1100 ,... , II h(r) 1100]

and make the additional assumption that f be (r + 1)-times differentiable.

3. B IS STRICTLY CONVEX

In this section, let B be any strictly convex normed vector space (e.g., the
"LP-spaces," 1 < p < (0), where "strictly convex" is defined as follows:

DEFINITION. B is strictly convex ifllf + gil < 2 whenever Ilfll = II g II = I
andf#: g.

THEOREM 3. Let V be an n-dimensional subspace of S. For V to be
p-Tchebycheff it is sufficient that dim [V n 7J(T)] ~ P and the (!f?;)~=1 are
linearly independent in V*. Conversely, if p ~ n - rand T(S) is infinite­
dimensional, the above conditions are necessary for V to be p-Tchebycheff.

Proof Since V is finite-dimensional, 3 at least one g in V satisfying (1).
Thus, if gi and g2 are two best approximations and '" #: 0, then
II T(f - gi)IIB = p, i = 1, 2, and ",(T(f - gl)) = fL(T(f - g2)) = p II '" liB* ,
by Corollary 1. Hence, if '" #: 0, T(f - gl) = T(f - g2), since B is strictly
convex [9, p. 300], and, so, Tgi = Tg2.

Now, if V has rank > p, then 3p + 2 distinct best approximations
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gl ,g2 ,... , gP+2 such that (g11+2 - gi)f!l are linearly independent. Suppose
the (~j)~~l are linearly independent in V*. Then it follows from Corollary I
and (2) that J1- *" 0 and, so, from the above we have Tgl = Tg2 = ... = Tg1'+2 .
Hence dim [V n 7J(T)] ~ p + 1.

For the converse, suppose, first, that the (~j)~~l are linearly dependent
on V. Then 3p + I linearly independent elements gl , g2 ,... , g1'+l in V such
that ~jgi = 0 (V(i, j)). We may assume that L::: II Tgi liB ~ 1. Then, if
L;~l bj~j = 0 in V*, where L;~l I bj I = I, choose fE 7J(T) such that

j = 1,2,... , r.

If L = L:;-l bj~j, then II L lis- = I, and for any g E V, Ilf - g II ~
I L(f - g)j = I Lf I = L;~l I bj I = 1. On the other hand, for any

El' E2 ,... , E11+l(1 Ei I ~ I), I ~j(f - L::: Ei gi)1 = I ~jfl ~ I (l ~j ~ r) and
p+l 11+1 11+1II T(f - Li~l Eigi liB ~ Li~l II Tgi liB ~ 1. ThuS{Li~l Eigi; I Ei I ~ I} forms

a (p + 1)-dimensional set of best approximations in V to f, and, so, the rank
of V > p.

Suppose now that dim[V n 7J(T)] > p. That is, 3p + I linearly independent
elements gl' g2 ,... , g11+l in V n 7J(T). Let F = {j I ~jgi = 0 (Vi)}' Let k
be the number of elements of F. We may also assume I ~jgi I ~ I (V(i, j)).
Choose {Mj}j,,:-rk to be linearly independent elements in the dual of some
finite-dimensional space T(W) containing T(V). Then the set of linear
functionals {~j}jEF v {MjT}j~P-k is linearly dependent in the dual V* of V.
If not, they would span an (n - p)-dimensional subspace of V* and, thus,
there would be a nontrivial linear combination L~~~ di gi = g* E v** = V
such that ~jg* = 0 (j E F) and MjTg* = 0 (l ~ j ~ n - p - k) is not true,
a contradiction. Thus, 3 scalars b j , j E F, and Cj (l ~ j ~ n ~ p - k),
not all zero, such that L' = LjEF bj~j + L;:::-k cjMjT is zero on V. If all
Cj = 0 then the ~j's are linearly dependent in V*, which case has already
been treated above. Hence we assume that not all Cj = 0, which implies that
M w = L;:::-k cjMj , as an element of T(W)*, is #- O. Let M be a norm­
preserving extension of this functional from T(W) to B. Let a = II Mil.
Assume, without loss of generality, that LjEF I bj I + a = 1. It follows from
Theorem I that if L = LjEF bj~j + MT, then II L lis- = 1. Let h be an
element in T(W) with II h liB ~ 1and M w(h) = a. (This is possible, since T(W)
is finite-dimensional and, therefore, reflexive.) Pick f' E T-l{h}. Next,
pick fl E 7J(T) such that

(j EF),

while ~jfl = -~jf' (j¢:F, I ~j ~ r). Letf=f' + fl' Then

~jf = sgn bj (j E F), II TfllB = II Tf' liB = II h liB ~ I and Ilfll ~ 1.
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Furthermore, M(T!) = M(h) = Mw(h) = a. Then, for any g E V,
lif - g II ~ I L(f - g)1 = I Lf - Lg I = I Lfl = I LiEF bifeif + M(T!)j =
LiEF I bi I + a = 1. On the other hand, for any EI , E2 , .•. , EP+l

if j E F

and

if j¢=F, I ~j ~ r.

So I fei(f - L:~: Ei gi)1 ~ I, I ~ j ~ r. Also II T(f - L~~~ Ei g;)IIB =
II TfllB ~ 1. Thus {L:~~ Ei g; ; 0 ~ I E; I ~ (p + I)-I} forms a (p + 1)­
dimensional set of best approximations in V offand, so, the rank of V > p.

Q.E.D.

EXAMPLE. Consider the example in Section I, with B = LPI, I < p < 00,

and a -:#- O. Then the n-dimensional subspace of all polynomials of the form
arxr- s + ar+lxr-S+l + ... + ar+n_Ixr-s+n-1 has rank not exceeding max[O, s]
in S and, in particular, is a Tchebycheff subspace if s is a nonpositive integer.

Note. The strict convexity of B is not needed in the proof of necessity in
Theorem 3.

4. B = VX

In this section, let B = VI, the space of all Lebesgue-integrable functions h
on 1= [b, c] C R, with II hill = I I h I = II I h I dx, where dx denotes
ordinary Lesbesgue measure. We also assume in this section that T(S) C CRI,
the space of real-valued continuous functions on I.

For a proof of the following lemma see, e.g., [I, p. 219].

LEMMA. Let f and h be elements of CRI. Iff has at most a finite number of
zeros and if I h sgnf-:#- 0, then for some A, I If - Ah I < Ilfi.

In the case r = 0 and T is the identity map, the following theorem reduces
to the well-known Jackson theorem and the proof reduces to that given in
[1, p. 219].

THEOREM 4. Let V be an n-dimensional subspace of S, on which the
(fei)~~l are linearly independent. Then V is Tchebycheff if V has property H(O).
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Proof Since V is finite-dimensional, 3 at least one g in V, satisfying (1).
By Corollary I, we obtain

1 ~j ~ r, (3)

and

r I T(f - g)j dx = p, (4)

since fL "* °by (2), and the (2i );=1 are linearly independent on V.
Suppose gl and g2 are best approximations off in V. Let F = {j I Ci "* O}.

Then (3) shows that there exist constants ai (j E F) such that 2 i gi = ai

(i = 1,2). Let k be the number of elements in F. Now, since the set of best
approximations is convex, g = t< gl + g2) is also a best approximation.
Hence, by (4), II (I T(f - g)1 - t I T(f - gl)1 - t [T(f - g2)1) dx = 0, and,
since the integrand is nonpositive and continuous, it is identically zero.
Suppose T(f - g) has n - k zeros. Then T(f - gl) and T(f - g2) have these
n - k zeros in common and, thus, T( gl - g2) has n - k zeros. Since also
2 i ( gl - g2) = °(j EF) and V has property H(O), we conclude that gl = g2 .

Assume now that T(f - g) has fewer than n - k zeros. Choose points
b = Xo < Xl < ... < Xn-k = C, including the zeros of T(f - g). Consider

I h sgn(T(f - g)) = 'L;::lk birpi(h), where, for every i, [ bi I = 1 and rpi(h) =

I::-
1

h. Then L = 'L;::lk birpiT vanishes on VI = V (') <niEF 7](2i )). For
otherwise, by the lemma, for some hE VI and '\, I I T(f - g - '\h)1 =

I I T(f - g) - ,\Th I < I I T(f - g)l. Hence, also, for some E > 0,
I I T(f - g - '\h - h')1 < I j T(f - g)[ if h' E V and II h' II < E. Further­
more, since the (2i )iEF are linearly independent on V, we could pick an h' E V
such that 1/ h' I[ < E and I 2 i(f - g - '\h - h')1 < p,j E F. Then g + '\h + h'
would be a better approximation of f than g, which is impossible. There
exists, therefore, a nonzero p E VI such that rp;(Tp) = 0, i = 1,2,... , n - k.
But °= rp;(Tp) = I::_

1
(Tp)(x) dx implies that Tp has at least one zero in

(Xi-I, Xi)' i = 1, 2, ... , n - k. Thus, by property H(O), p = 0, a contradiction.
Q.E.D.

EXAMPLES. Examples 1 and 2 of Section 2 remain valid if we replace Cr I
by CRrl and 1/ . [100 by II . 111 in Example 2, and let B = LIIin Example 1.

5. REMARK ON ANOTHER NORM FOR S

In the case B = LPX, 1 ~ p < 00, consider on S the new norm
Ilfll* = ('L<> I 21'IP + 1/ Tfl/;)l/P. Then, analogously to the proof of
Theorem 2, S can be realized as a subspace of LPX*, where x* is the space
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described in the proof of Theorem 2. Thus, in particular, if I < P < 00,

every closed subspace of S is a Tchebycheff subspace. If p = I, then property
H(O) is sufficient for the n-dimensional space V to be Tchebycheff.
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